282 research outputs found

    Controlled single electron transfer between Si:P dots

    Full text link
    We demonstrate electrical control of Si:P double dots in which the potential is defined by nanoscale phosphorus doped regions. Each dot contains approximately 600 phosphorus atoms and has a diameter close to 30 nm. On application of a differential bias across the dots, electron transfer is observed, using single electron transistors in both dc- and rf-mode as charge detectors. With the possibility to scale the dots down to few and even single atoms these results open the way to a new class of precision-doped quantum dots in silicon.Comment: 3 figures, 3 page

    Charge-based silicon quantum computer architectures using controlled single-ion implantation

    Get PDF
    We report a nanofabrication, control and measurement scheme for charge-based silicon quantum computing which utilises a new technique of controlled single ion implantation. Each qubit consists of two phosphorus dopant atoms ~50 nm apart, one of which is singly ionized. The lowest two energy states of the remaining electron form the logical states. Surface electrodes control the qubit using voltage pulses and dual single electron transistors operating near the quantum limit provide fast readout with spurious signal rejection. A low energy (keV) ion beam is used to implant the phosphorus atoms in high-purity Si. Single atom control during the implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure, while positional accuracy is provided by a nanomachined resist mask. We describe a construction process for implanted single atom and atom cluster devices with all components registered to better than 20 nm, together with electrical characterisation of the readout circuitry. We also discuss universal one- and two-qubit gate operations for this architecture, providing a possible path towards quantum computing in silicon.Comment: 9 pages, 5 figure

    Charge-based quantum computing using single donors in semiconductors

    Get PDF
    Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionised. Surface electrodes control the qubit and a radio-frequency single electron transistor provides fast readout. The calculated single gate times, of order 50ps or less, are much shorter than the expected decoherence time. We propose universal one- and two-qubit gate operations for this system and discuss prospects for fabrication and scale up.Comment: 5 pages, 4 figures, updated version submitted to Physical Review

    Collusion through Joint R&D: An Empirical Assessment

    Get PDF
    This paper tests whether upstream R&D cooperation leads to downstream collusion. We consider an oligopolistic setting where firms enter in research joint ventures (RJVs) to lower production costs or coordinate on collusion in the product market. We show that a sufficient condition for identifying collusive behavior is a decline in the market share of RJV-participating firms, which is also necessary and sufficient for a decrease in consumer welfare. Using information from the US National Cooperation Research Act, we estimate a market share equation correcting for the endogeneity of RJV participation and R&D expenditures. We find robust evidence that large networks between direct competitors – created through firms being members in several RJVs at the same time – are conducive to collusive outcomes in the product market which reduce consumer welfare. By contrast, RJVs among non-competitors are efficiency enhancing

    The Simplicity of Optimal Trading in Order Book Markets

    Get PDF
    A trader’s execution strategy has a large effect on his profits. Identifying an optimal strategy, however, is often frustrated by the complexity of market microstructures. We analyse an order book based on continuous double auction market under two different models of trader’s behaviour. In the first case actions only depend on a linear combination of the best bid and ask. In the second model, traders adopt the Markov perfect equilibrium strategies of the trading game. Both models are analytically intractable, and so optimal strategies are identified by the use of numerical techniques. Using the Markov model we show that, beyond the best quotes, additional information has little effect on either the behaviour of traders or the dynamics of the market. The remarkable similarity of the results obtained by the linear model indicates that the optimal strategy may be reasonably approximated by a linear function. We conclude that while the order book market and strategy space of traders are potentially very large and complex, optimal strategies may be relatively simple and based on a minimal information set

    Single-spin readout for buried dopant semiconductor qubits

    Full text link
    In the design of quantum computer architectures that take advantage of the long coherence times of dopant nuclear and electron spins in the solid-state, single-spin detection for readout remains a crucial unsolved problem. Schemes based on adiabatically induced spin-dependent electron tunnelling between individual donor atoms, detected using a single electron transistor (SET) as an ultra-sensitive electrometer, are thought to be problematic because of the low ionisaton energy of the final D- state. In this paper we analyse the adiabatic scheme in detail. We find that despite significant stabilization due to the presence of the D+, the field strengths required for the transition lead to a shortened dwell-time placing severe constraints on the SET measurement time. We therefore investigate a new method based on resonant electron transfer, which operates with much reduced field strengths. Various issues in the implementation of this method are also discussed.Comment: 12 pages, 5 figures, 1 tabl
    • …
    corecore